

Forking Hardware!

Using Git to Manage
Hardware Projects

Write new feature Commit
Changes

Debug Test

Release

A Software Development Work-flow

A Hardware Development Work-flow

Design a new
product

Manufacture
Prototype

Test

Debug

Rework/ECN

Mod the
prototype

Design next
Revision

Design in a new
feature Manufacture

Debug

Test

Release

An Alternative Hardware Development Work-flow

Alter Design
& Commit

Why Bother?

● Keep up to date on different machines
● Share your progress
● Easier to keep track of than a bunch of folders
● Digital designs are harder to track than

hardcopy

Git for Beginners

● http://git-scm.com/documentation
● git init
● git add <filename>
● git commit -a
● git push
● git pull
● Bare repositories – for servers

http://git-scm.com/documentation

When do I commit?

● Distributed version control = lots of commits
● Before committing!
● Big re-works
● Before you forget what you changed

Compromises

● Source repository and downloads
● Some hardware files are just binary blobs
● Preview versions (PDF)

Specific Ideas

● Use text based formats (e.g. CSV)
● Make sure you only commit the essentials
● Make use of tagging for major milestones (e.g.

board manufacture)
● Learn about sub-modules

Diffing PCB Designs

Where next?

● Visual diffs?
● Drawing numbers as revision numbers
● Collaborative design e.g. merge options
● Automated ECN generation

Summary

● Use Git for storing your hardware designs
● Commit little, commit often
● Make sure you describe why you made

changes – like in an ECN

http://www.nathandumont.com/node/282

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

